Химическая физика - significado y definición. Qué es Химическая физика
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es Химическая физика - definición


ХИМИЧЕСКАЯ ФИЗИКА         
раздел науки, пограничный между химией и физикой. Изучает электронную структуру молекул и твердых тел, молекулярные спектры, элементарные акты химических реакций, процессы горения и взрыва и др., с использованием методов теоретической и экспериментальной (оптическая и радиоспектроскопия, рентгеновский структурный анализ, масс-спектрометрия и др.) физики. Сформировалась в кон. 20-х - нач. 30-х гг. 20 в. в связи с развитием квантовой механики и использованием ее представлений в химии. Сейчас граница между химической физикой и физической химией условна. Термин введен немецким химиком А. Эйкеном в 1930.
Химическая физика         

научная область, пограничная между химией и новыми разделами физики. Возникновение Х. ф. было подготовлено многими выдающимися открытиями в физике начала 20 в. (см. Атомная физика, Квантовая механика). Как следствие быстрого прогресса физики появились новые возможности теоретического и экспериментального решения химических проблем, а это, в свою очередь, привело к расширению исследований с применением физически методов. Складывались современные представления о строении и электрических свойствах атомов и молекул, природе межмолекулярных сил и элементарного акта химического взаимодействия. После открытия нем. учёным М. Боденштейном неразветвлённых цепных реакций (1913) и установления В. Нернстом принципиального химического механизма таких реакций начался новый этап развития кинетики химической (См. Кинетика химическая). Механизм химических реакций рассматривается как сложная совокупность элементарных химических процессов с участием молекул, атомов, свободных радикалов, ионов, возбуждённых частиц. Открыты и изучены ранее неизвестные типы химических реакций, например цепные разветвленные реакции (Н. Н. Семенов (См. Семёнов), С. Хиншелвуд), и явления, свойственные этому типу реакций; создана теория процессов горения и взрывов, базирующаяся на химической кинетике (Семенов).

Впервые термин "Х. ф." в понимании, близком к современному, ввёл немецкий учёный А. Эйкен, опубликовав "Курс химической физики" (1930). До этого (1927) вышла книга В. Н. Кондратьева, Н. Н. Семенова и Ю. Б. Харитона "Электронная химия", название которой в известной мере раскрывает смысл термина "Х. ф.". В 1931 был организован институт химической физики АН СССР; с 1933 в США издаётся "Журнал химической физики" (Journal of Chemical Physics).

Уже с 20-30-х гг. к Х. ф. стали относить работы по изучению строения электронной оболочки атома; квантово-механической природы химических сил; строения и свойств молекул, кристаллов и жидкостей; проблем химической кинетики - природы элементарных актов химического взаимодействия, свойств свободных радикалов, квантовомеханической теории реакционной способности соединений, фотохимических реакций и реакций в разрядах, теории горения и взрывов.

Современный этап в развитии Х. ф. характеризуется широким применением многочисленных весьма эффективных физических методов, дающих большой объём информации о структуре атомов и молекул и механизмах химических реакций. Это спектрально-оптические методы, масс-спектрометрия, метод молекулярных пучков, рентгеноструктурный анализ, электронная микроскопия, электромагнитные методы определения поляризуемости, магнитной восприимчивости, электронография и ионография, нейтронография и нейтроно-спектроскопические методы, электронный парамагнитный резонанс, ядерный магнитный резонанс, ядерный квадрупольный резонанс, двойные резонансы, метод спинового эха, химическая поляризация электронов и ядер, гамма-резонансная спектроскопия, методы установления структурных и динамических свойств молекул с помощью мезонов и позитронов, методы определения импульсов электронов в молекулах, импульсные методы изучения быстрых процессов (импульсный радиолиз, импульсный, в том числе лазерный, фотолиз), ударно-волновые и др. методы.

Растет значение квантовой химии (См. Квантовая химия), применение ЭВМ для расчёта электронного строения и свойств химических соединений и выполнения др. расчётов, необходимых для развития теории химических реакций.

Большое внимание уделяется изучению механизмов элементарных актов химических превращения в газовой и конденсированной фазах. Применительно к газофазным реакциям интенсивно исследуется кинетика неравновесных процессов, важных в условиях высоких температур и глубокого вакуума, выясняется роль колебательного возбуждения молекул. Разрабатывается теория туннельных переходов в кинетике химических реакций, устанавливаются критерии, характеризующие температуры, ниже которых туннельные переходы преобладают над барьерными. Изучаются особенности процессов при температурах, близких к абсолютному нулю. Развивается химия низких температур (низкотемпературные реакции протекают направленно, с весьма высоким выходом целевых продуктов, с большими, иногда взрывными, скоростями).

Интенсивно ведутся работы по химии высоких энергий - области Х. ф., связанной с исследованиями кинетики, механизма и практических приложений процессов, в которых энергии отдельных атомов, молекул, радикалов превышают энергию теплового движения, а зачастую и энергию химических связей.

Важным разделом химико-физических исследований является Фотохимия, имеющая большое значение для теории химических процессов, решения проблем фотосинтеза, фоторецепции, фотографии, светостабилизации полимерных материалов. С помощью современных импульсных методов исследуются весьма быстрые фотопроцессы, что важно для установления механизма элементарных реакций. Изучается механизм Фотохромизма, знание которого необходимо в связи с широким применением фотохромных материалов (См. Фотохромные материалы) в технике.

Ведутся теоретические и прикладные исследования в области низкотемпературной плазмы, разрабатываются общие принципы неравновесной кинетики химических реакций в плазме и научные основы плазмо-химической технологии (см. Плазмохимия).

Сравнительно новое направление Х. ф. - изучение химических превращений конденсированных веществ в результате их сжатия под действием ударных волн. Изучается кинетика быстрых неизотермических реакций в условиях адиабатического расширения и сжатия газов.

Возрастает роль и значение работ по ядерной химии, которая занимается изучением химических последствий ядерных процессов (ядерные реакции, радиоактивный распад), исследованиями в области химии новых трансурановых элементов, а также своеобразных систем (в частности, мезоатомов), возникающих при воздействии на вещество позитронов и мезонов. Развиваются методы радиационной химии (См. Радиационная химия).

Одним из фундаментальных следствий теории цепных процессов является вывод об образовании высоких концентраций свободных атомов и радикалов в ходе цепных разветвленных реакций. Этот вывод лежит в основе многочисленных теоретических и экспериментальных работ, имеющих большое практическое значение. Развиваются исследования цепных процессов с энергетическими разветвлениями цепи. На основе таких процессов создаются химические лазеры. Новым научным направлением становится изучение влияния магнитных полей на механизм реакций с участием свободных радикалов. Сохраняет своё большое теоретическое и практическое значение изучение теплового взрыва, горения и детонации.

Большое внимание уделяется изучению кинетики и механизма химических реакций в твёрдом теле (см. также Топохимические реакции) и химико-физическим аспектам Катализа. В области гетерогенного катализа Х. ф. сосредоточивает внимание на изучении свойств частиц, адсорбированных на поверхности катализатора, установлении структуры и распределения активных центров на поверхности твёрдых тел, разработке элементарного акта гетерогенного катализа. Перспективным объектом химико-физического изучения становится металлокомплексный катализ, приближающийся по эффективности к ферментативному.

В области электрохимии (См. Электрохимия) Х. ф. разрабатывает квантовохимическое обоснование особенностей электрохимических реакций, занимается экспериментальным изучением механизма элементарного акта электродных реакций, а также процессов в объёме раствора, сопровождающихся переносом электронов, исследованием сольватированных электронов, теоретическим анализом темновой и фотоэмиссии электронов из металла в раствор.

Химико-физические методы и подходы становятся эффективным инструментом научных исследований во всех разделах химической науки. Современная Физическая химия также во всё возрастающей степени использует при решении химических проблем новейшие достижения физики и физические методы исследования.

Лит.: Кондратьев В. Н., Семенов Н. Н., Харитон Ю. Б., Электронная химия, М. - Л., 1927; Эйкен А,, Курс химической физики, пер. с нем., вып. 1-3, М. - Л., 1933-1935; Семенов Н. Н., Кондратьев В. Н., Эмануэль Н. М., Химическая физика в Академии наук СССР, "Вестник Академии наук СССР", 1974, № 2, с. 49; Семенов Н. Н., Химическая физика. (Физические основы химической кинетики), Черноголовка, 1975.

Н. М. Эмануэль.

Химическая физика         
Хими́ческая фи́зика — наука о физических законах, управляющих строением и превращением химических веществ.

Wikipedia

Химическая физика

Хими́ческая фи́зика — наука о физических законах, управляющих строением и превращением химических веществ.

Ejemplos de uso de Химическая физика
1. Сто лет назад русских студентов было 60%! У Эбишера преподают 4 профессора из России, из нашего тоже знаменитого института: физика элементарных частиц, космическая физика, химическая физика.
2. - Ну а если говорить серьезно, химическая физика - это экстраполяция на химию физики микромира". Кстати, одним из его увлечений было собирание юмористических миниатюр...
3. Область научных интересов академика Гольданского была чрезвычайно широка: химическая физика, низкотемпературная и радиационная химия, биофизика, туннельные явления в химических превращениях, структура вещества, реакции в конденсированных средах и критические явления, космохимия...
¿Qué es ХИМИЧЕСКАЯ ФИЗИКА? - significado y definición